
CS 61A Structure and Interpretation of Computer Programs
Spring 2016 Discussion Quiz 9

1. (3 points) Chasing Tails

Identify whether or not each of the following procedures uses a constant amount of space in a tail-recursive
Scheme implementation (i.e. whether every recursive call is a tail call).

(define (copy lst result)

(if (null? lst) result

((lambda (copy) copy) (copy (cdr lst)

(append result (list (car lst)))))))

(Note: append takes two or more lists and constructs a new list with all of their elements.)

__

(define (broken lst) (broken (broken lst)))

__

(define (is -ascending lst last -num)

(if (null? lst) #t

(and (is-ascending (cdr lst) (car lst)) (> (car lst) last -num))))

(This subroutine would need to be called with a last-num that is less than all of the elements in the list.)

__

2. (3 points) It’s Hailing... Again

Write a tail-recursive version of hailstone. This procedure accepts a positive integer n and an empty list lst,
and returns a list containing the hailstone sequence that starts at n.

As an example, (hailstone 5 ’()) would return (5 16 8 4 2 1).

(define (hailstone n lst)

__

__

__)

3. (4 points) Humans Need Not Apply

What does eval do (in the context of an interpreter)? What does apply do?

