
CS 61A Discussion 8

March 17, 2016



Scheme

“The single most important thing to realize is that you’re learning a new language. 
A lot of your questions will be along the lines of ‘what happens if…’, and you should 
definitely test these things out in the interpreter. This will allow you to quickly build 
the intuition necessary to use Scheme effectively.”

Thanks to Jack, it’s easy now! (scheme.cs61a.org)

http://scheme.cs61a.org


Lambdas in Scheme

+ Lambda expressions always create function objects!

(define (sq x) (* x x))
- “Define a function...”
- Here is its name, here are its arguments, here’s what to do with those 

arguments when you call it

(define sq (lambda (x) (* x x)))
- “Make a binding from the name sq to whatever the expression is”
- Here, the expression happens to evaluate to a lambda function



WWSP, pt. 2

((lambda (x) (x x)) (lambda (y) 4))



WWSP, pt. 2

((lambda (x) (x x)) (lambda (y) 4))
4



Lists in Scheme...

Lists in Scheme are actually linked lists (“pairs”). Make sure you understand the 
following mapping:

Scheme lists Python linked lists

cons Link(...)

car .first

cdr .rest

‘(), nil Link.empty


