
CS 61A Discussion 5

February 25, 2016



Agenda

● Quiz 05
● Midterm 1 Reflection
● Mutation
● Dictionaries



Quiz 05: Solution



MT1 was hard

...but fun, right?
(It was empirically pretty hard. This is the distribution from last semester’s MT1.)



MT1 Comments:

+ 20/40 (or even 10/40) is not the same as failing the course. We’ll account for 
brutal test scores through the rest of the assignments.

+ Tests (and general content) is cumulative. You should go over MT1 and make sure 
you understand the concepts that we tested you on.

+ No matter how you did, don’t let your guard down. Keep working hard and ask for 
help when you need it. Remember: tenacity!

+ I’m happy to meet with anyone who wants to talk one-on-one about their midterm.



Trees

There is a lot of terminology surrounding trees. (Sorry.) Be familiar with all of them.

+ Node – think of it as a point in the tree. (It’s still a tree itself.)
+ Parent node – one half of the parent/child relationship
+ Child node – the other half of the parent/child relationship
+ Root – the topmost node
+ Leaf – one of the nodes on the bottom
+ Subtree – a smaller tree within a larger tree
+ Depth – distance from the root. (Root has depth 0, its children have depth 1…)
+ Height – max distance from the root



The Tree ADT

We represent trees as an abstract data type.

+ tree(label, children=[]) – creates and returns a tree
+ label(tree) – returns the label at the topmost node of the tree
+ children(tree) – returns the children of the topmost node of the tree
+ is_leaf(tree) – True if the tree is a leaf. False if it isn’t



Mutation

Mutation means that you’re changing the actual object in memory.



Mutation, cont.

+ Mutation functions often return None.
+ Also, functions that mutate a list usually don’t need to create a new list.
+ The + operator creates a new list. It does not mutate.
+ The += operator mutates, for some reason.



Mutable Lists (i.e. the lists you’ve already been using)

Lists are mutable. You mutate them with list methods, which are basically functions 
that act on a list:

+ append(elt) – adds something to the end of the list
+ insert(i, elt) – inserts something at index i
+ remove(elt) – removes something from a list
+ pop(i) – removes AND RETURNS the element at index i



Dictionaries

Dictionaries are basically a bunch of key/value pairs.

+ Only one value per key!
+ dictionary[key] = val – adds the (key, val) pair to the dictionary
+ del dictionary[key] – deletes a key/value pair from the dictionary

+ To iterate over keys, we use 
for key in dictionary:

print(key) # this is just an example

print(dictionary[key]) # prints values


