CS 61A Fall 2016

For Exercises 1-6 (below), identify the order of growth of the runtime as a function of n. As an example, your answer might be $O(\sqrt{n}) \ldots$ or even $O\left(n^{5} \log n\right)$. Note that this code will also be on the slides, along with the solutions to all of these problems!

1. (2 points) Exercise 1
```
def mystery1(n):
    n, result = str(n), ,'
    num_digits = len(n)
    for i in range(num_digits):
        result += n[num_digits - i - 1]
    return result
def mystery2(n):
    n, result = 5, 0
    while n <= 3000:
        result += mystery1(n // 2)
        n += 1
    return result
```

2. (3 points) Exercise 2
```
def mystery3(n):
    if n < O or n <= sqrt(n):
        return n
    return n + mystery3(n // 3)
def mystery4(n):
    if sqrt(n) <= 50:
        return 1
    return n * mystery4(n // 2)
def mystery5(n):
    for _ in range(int(sqrt(n))):
        n = 1 + 1
    return n
```

3. (2 points) Exercise 3
```
def mystery6(n):
    while n > 1:
        x = n
        while x > 1:
            print(n, x)
            x = x // 2
        n -= 1
```

```
def mystery7(n):
```

def mystery7(n):
result = 0
result = 0
for i in range(n // 10):
for i in range(n // 10):
result += 1
result += 1
for j in range(10):
for j in range(10):
result += 1
result += 1
for k in range(10 // n):
for k in range(10 // n):
result += 1
result += 1
return result

```
    return result
```

4. (2 points) Exercise 4
```
def mystery8(n):
    if n == 0:
        return ,'
    result, stringified = ,', str(n)
    for digit in stringified:
        for _ in range(n):
            result += digit
    result += mystery8(n - 1)
    return result
```

def mystery9(n):
total = 0
for in in range(1, n):
total *= 2
if i $\% \mathrm{n}=0$:
total *= mystery9 (n - 1)
total *= mystery9 (n - 2)
elif i == n // 2:
for j in range (1, n):
total *= j
return total
5. (2 points) Exercise 5

```
def mystery10(n):
    if n > 0:
        r1 = mystery10(-n)
        r2 = mystery10(n - 1)
        return r1 + r2
    return 1
---------------
def mystery11(n):
    if n < 1:
            return n
    def mystery12(n):
            i = 1
            while i < n:
            i *= 2
        return i
    return mystery11(n / 2) + mystery11(n / 2) + mystery12(n - 2)
```

6. (2 points) Exercise 6

The orders of growth should now be functions of m and n.

```
def mystery13(m, n):
    if n <= 1:
        return 0
    result = 0
    for i in range(3 ** m):
        result += i // n
    return result + mystery13(m - 5, n // 3)
----------------
def mystery14(m, n):
    result = 0
    for i in range(1, m):
        j = i * i
        while j <= n:
            result += j
            j += 1
    return result
```


7. (1 points) Exercise 7

Define n to be the length of the input list. How much memory does the following program use as a function of n ?

```
def weighted_random_choice(lst):
    temp = []
    for i in range(len(lst)):
        temp.extend([lst[i]] * (i + 1))
    return random.choice(temp)
```


8. (7 points) Exercise 8

Provide an algorithm that, given a sorted list A of distinct integers, determines whether there is an index i for which $A[i]=i$. Your algorithm should run in time $O(\log n)$, where n is the length of the list.

```
def index_exists(A):
    def helper(lower, upper):
        if -------------------------------------
            return
        mid_idx = (lower + upper) // 2
        if _------------------------------------
            return True
        elif -_--------------------------------
            return
        else:
            return
return
```

9. (3 points) Summer 2013 MT2 | Q2
(a) (1 pt) What is the order of growth for a call to $\operatorname{fizzle}(n)$?
```
def fizzle(n):
    if n <= 0:
            return n
        elif n % 23 == 0:
            return n
        return fizzle(n - 1)
```

(b) (1 pt) What is the order of growth for a call to explode (n) ?

```
def boom(n):
    if n == 0:
            return 'BOOM!'
    return boom(n - 1)
def explode(n):
    if n == 0:
        return boom(n)
    i = 0
    while i < n:
        boom(n)
        i += 1
    return boom(n)
```

(c) (1 pt) What is the order of growth for a call to dreams (n) ?

```
def dreams(n):
    if n <= 0:
        return n
    if n > 0:
        return n + dreams(n // 2)
```


10. (4 points) Summer 2014 MT2 \mid Q6

Consider the following function (assume that parameter S is a list):

```
def umatches(S):
    result = set()
    for item in S:
        if item in result:
            result.remove(item)
        else:
            result.add(item)
    return result
```

(a) (1 pt) Fill in the blank: The function umatches returns the set of all
(b) (1 pt) Let's assume that the operations of adding to, removing from, or checking containment in a set each take roughly constant time. Give an asymptotic bound (the tightest you can) on the worst-case time for umatches as a function of $N=\operatorname{len}(S)$.

(c) (1 pt) Suppose that instead of having result be a set, we make it a list (so that it is initialized to [] and we use .append to add an item). What now is the worst-case time bound? You can assume that . append is a constant-time operation, and .remove and the in operator require time that is $\Theta(L)$ in the worst case, where L is the length of the list operated on. Since we never add an item that is already in the list, each value appears at most once, just as for a Python set.
(d) (1 pt) Now suppose that we consider only cases where the number of different values in list S is at most 100 , and we again use a list for result. What is the worst-case time now?

11. (2 points) Summer 2015 MT2 | Q5(d)

```
def append(link, value):
    """Mutates LINK by adding VALUE to the end of LINK."""
    if link.rest is Link.empty:
        link.rest = Link(value)
    else:
        append(link.rest, value)
def extend(link1, link2):
    """Mutates LINK_1 so that all elements of LINK_2
    are added to the end of LINK_1.
    " ""
    while link2 is not Link.empty:
        append(link1, link2.first)
        link2 = link2.rest
```

(a) (1 pt) What order of growth describes the runtime of calling append? Give your function in terms of n, where n is the number of elements in the input link.
(b) (1 pt) Assuming the two input linked lists both contain n elements, what order of growth best describes the runtime of calling extend?
-_-_-_--_-_-_-_-
12. (2 points) Summer 2012 Final | Q2
(a) (1 pt) What is the order of growth in n of the runtime of collide, where n is its input?

```
def collide(n):
        lst = []
        for i in range(n):
            lst.append(i)
        if n <= 1:
            return 1
        if n <= 50:
            return collide(n - 1) + collide(n - 2)
        elif n > 50:
            return collide(50) + collide(49)
```

 (b) (1 pt) What is the order of growth in n of the runtime of into_me, where n is its input?

```
def crash(n):
    if n < 1:
            return n
        return crash(n - 1) * n
```

```
def into_me(n):
    lst = []
    for i in range(n):
        lst.append(i)
    sum = 0
    for elem in lst:
        sum = sum + crash(n) + crash(n)
    return sum
```

13. (4 points) Spring 2014 Final \| Q5(c)

Give worst-case asymptotic Θ bounds - you guys can write them as Big- O bounds - for the running time of the following code snippets. As a reminder, it is meaningful to write things with multiple arguments like $\Theta(a+b)$, which you can think of as " $\Theta(N)$ where $N=a+b$."
(a) (1 pt)

```
    def a(m, n):
```

 for i in range(m):
 for \(j\) in range(\(n / / 100\)):
 print('hi')

(b) $(1 \mathrm{pt})$

```
def b(m, n):
        for i in range(m // 3):
                print('hi')
        for j in range(n * 5):
            print('bye')
```

 --_-_-_-_-_-_-
 (c) $(1 \mathrm{pt})$
def $d(m, n):$
for i in range(m):
$j=0$
while j < i:
$j=j+100$
(d) $(1 \mathrm{pt})$
def $f(m)$:
i $=1$
while i < m:
i $=i$ * 2
return i

