
CS 61A Structure and Interpretation of Computer Programs
Fall 2016 Orders of Growth Review

For Exercises 1-6 (below), identify the order of growth of the runtime as a function of n. As an example, your answer
might be O(

√
n)... or even O(n5 log n). Note that this code will also be on the slides, along with the solutions to all

of these problems!

1. (2 points) Exercise 1

def mystery1(n):

n, result = str(n), ’’

num_digits = len(n)

for i in range(num_digits):

result += n[num_digits - i - 1]

return result

def mystery2(n):

n, result = 5, 0

while n <= 3000:

result += mystery1(n // 2)

n += 1

return result

2. (3 points) Exercise 2

def mystery3(n):

if n < 0 or n <= sqrt(n):

return n

return n + mystery3(n // 3)

def mystery4(n):

if sqrt(n) <= 50:

return 1

return n * mystery4(n // 2)

def mystery5(n):

for _ in range(int(sqrt(n))):

n = 1 + 1

return n

2

3. (2 points) Exercise 3

def mystery6(n):

while n > 1:

x = n

while x > 1:

print(n, x)

x = x // 2

n -= 1

def mystery7(n):

result = 0

for i in range(n // 10):

result += 1

for j in range (10):

result += 1

for k in range (10 // n):

result += 1

return result

4. (2 points) Exercise 4

def mystery8(n):

if n == 0:

return ’’

result , stringified = ’’, str(n)

for digit in stringified:

for _ in range(n):

result += digit

result += mystery8(n - 1)

return result

def mystery9(n):

total = 0

for i in range(1, n):

total *= 2

if i % n == 0:

total *= mystery9(n - 1)

total *= mystery9(n - 2)

elif i == n // 2:

for j in range(1, n):

total *= j

return total

3

5. (2 points) Exercise 5

def mystery10(n):

if n > 0:

r1 = mystery10(-n)

r2 = mystery10(n - 1)

return r1 + r2

return 1

def mystery11(n):

if n < 1:

return n

def mystery12(n):

i = 1

while i < n:

i *= 2

return i

return mystery11(n / 2) + mystery11(n / 2) + mystery12(n - 2)

6. (2 points) Exercise 6

The orders of growth should now be functions of m and n.

def mystery13(m, n):

if n <= 1:

return 0

result = 0

for i in range(3 ** m):

result += i // n

return result + mystery13(m - 5, n // 3)

def mystery14(m, n):

result = 0

for i in range(1, m):

j = i * i

while j <= n:

result += j

j += 1

return result

4

7. (1 points) Exercise 7

Define n to be the length of the input list. How much memory does the following program use as a function of
n?

def weighted_random_choice(lst):

temp = []

for i in range(len(lst)):

temp.extend ([lst[i]] * (i + 1))

return random.choice(temp)

8. (7 points) Exercise 8

Provide an algorithm that, given a sorted list A of distinct integers, determines whether there is an index i for
which A[i] = i. Your algorithm should run in time O(log n), where n is the length of the list.

def index_exists(A):

def helper(lower , upper):

if _________________________________:

return _________________________

mid_idx = (lower + upper) // 2

if _________________________________:

return True

elif _______________________________:

return _________________________

else:

return _________________________

return _________________________________

9. (3 points) Summer 2013 MT2 | Q2

(a) (1 pt) What is the order of growth for a call to fizzle(n)?

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0:

return n

return fizzle(n - 1)

5

(b) (1 pt) What is the order of growth for a call to explode(n)?

def boom(n):

if n == 0:

return ’BOOM!’

return boom(n - 1)

def explode(n):

if n == 0:

return boom(n)

i = 0

while i < n:

boom(n)

i += 1

return boom(n)

(c) (1 pt) What is the order of growth for a call to dreams(n)?

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2)

10. (4 points) Summer 2014 MT2 | Q6

Consider the following function (assume that parameter S is a list):

def umatches(S):

result = set()

for item in S:

if item in result:

result.remove(item)

else:

result.add(item)

return result

(a) (1 pt) Fill in the blank: The function umatches returns the set of all

___.

(b) (1 pt) Let’s assume that the operations of adding to, removing from, or checking containment in a set
each take roughly constant time. Give an asymptotic bound (the tightest you can) on the worst-case time
for umatches as a function of N = len(S).

(c) (1 pt) Suppose that instead of having result be a set, we make it a list (so that it is initialized to []

and we use .append to add an item). What now is the worst-case time bound? You can assume that
.append is a constant-time operation, and .remove and the in operator require time that is Θ(L) in the
worst case, where L is the length of the list operated on. Since we never add an item that is already in
the list, each value appears at most once, just as for a Python set.

6

(d) (1 pt) Now suppose that we consider only cases where the number of different values in list S is at most
100, and we again use a list for result. What is the worst-case time now?

11. (2 points) Summer 2015 MT2 | Q5(d)

def append(link , value):

""" Mutates LINK by adding VALUE to the end of LINK."""

if link.rest is Link.empty:

link.rest = Link(value)

else:

append(link.rest , value)

def extend(link1 , link2):

""" Mutates LINK_1 so that all elements of LINK_2

are added to the end of LINK_1.

"""

while link2 is not Link.empty:

append(link1 , link2.first)

link2 = link2.rest

(a) (1 pt) What order of growth describes the runtime of calling append? Give your function in terms of n,
where n is the number of elements in the input link.

(b) (1 pt) Assuming the two input linked lists both contain n elements, what order of growth best describes
the runtime of calling extend?

12. (2 points) Summer 2012 Final | Q2

(a) (1 pt) What is the order of growth in n of the runtime of collide, where n is its input?

def collide(n):

lst = []

for i in range(n):

lst.append(i)

if n <= 1:

return 1

if n <= 50:

return collide(n - 1) + collide(n - 2)

elif n > 50:

return collide (50) + collide (49)

(b) (1 pt) What is the order of growth in n of the runtime of into me, where n is its input?

def crash(n):

if n < 1:

return n

return crash(n - 1) * n

7

def into_me(n):

lst = []

for i in range(n):

lst.append(i)

sum = 0

for elem in lst:

sum = sum + crash(n) + crash(n)

return sum

13. (4 points) Spring 2014 Final | Q5(c)

Give worst-case asymptotic Θ bounds – you guys can write them as Big-O bounds – for the running time of the
following code snippets. As a reminder, it is meaningful to write things with multiple arguments like Θ(a+ b),
which you can think of as “Θ(N) where N = a + b.”

(a) (1 pt)

def a(m, n):

for i in range(m):

for j in range(n // 100):

print(’hi’)

(b) (1 pt)

def b(m, n):

for i in range(m // 3):

print(’hi’)

for j in range(n * 5):

print(’bye’)

(c) (1 pt)

def d(m, n):

for i in range(m):

j = 0

while j < i:

j = j + 100

(d) (1 pt)

def f(m):

i = 1

while i < m:

i = i * 2

return i
