
CS 61A
DISCUSSION NINE

November 10, 2016

TOPICS FOR TODAY

Iterators, generators, streams (, ...turtle graphics demo !?)

Overview

▸ Iterators are objects that sweep over a collection of items (in a
specific order / step size). This happens via repeated application
of the next method, which is necessarily defined on all iterators.

▸ Streams are lazily evaluated linked lists. Elements in the list aren’t
computed until you specifically ask for them, which means you can
represent infinite sequences as streams.

ANNOUNCEMENTS

▸ No in-person lab on Thanksgiving week (instead, we’ll have
a “long, optional” one to be completed on your own)

ITERATORS

ITERATION (REVIEW)

Iterators step through a collection, item by item, via next
Iterables “are” the collection, and provide iterators via iter

If you have an iterable, you can get an iterator over it by calling iter. Then you
can observe all of its elements by repeatedly calling next on the iterator.

Be warned: iterators are single-use only! (Once an iterator has gone through all
the elements, it’s done; calling next on it will give StopIteration errors
forever.) To get a fresh iterator, one would have to call iter on the iterable
again.

- Note that depending on the implementation, the second iterator might be
finished anyway (e.g. if every iterator modifies the same state variables)

ITERATION (REVIEW)

iter(iterable) → iterator
next(iterator) → value, or a StopIteration error

ITERATION (REVIEW)

Lots of built-in functions take or produce iterators! Be aware of these.

▸ map(function, iterable)
▹ Returns an iterator over mapped elements in the iterable

▸ filter(function, iterable)
▹ Returns an iterator over filtered elements from the iterable

▸ zip(*iterables)
▹ Returns an iterator over aggregations of elements from each of the

iterables

ITERATION (REVIEW)

To create an iterable, you could write a class that implements __iter__ as a
generator function.

class Primes:
 def __init__(self, n):
 self.n = n # upper limit
 def __iter__(self):
 P = [True for i in range(2, self.n + 1)]
 for i in range(2, self.n + 1):
 if not P[i - 2]: continue
 yield i
 if i > sqrt(self.n): continue
 for j in [i*i + k*i for k in range((self.n - i*i)//i + 1)]:
 P[j - 2] = False

list(Primes(30)) → [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

ITERATION (REVIEW)

Behind the scenes, for-loops really just create iterators using iter and then call
next a bunch of times on the iterator.

for x in <expr>:
 <do stuff>
– is equivalent to –
iterator = iter(<expr>)
try:
 while True:
 n = next(iterator)
 <do stuff>
except StopIteration:
 pass

ITERATORS E1

>>> t = iter([0, 1, 2]) # t is now an iterator
>>> u = iter(t) # does it error…?

What happens when you call iter on an iterator?

ITERATORS E1

>>> t = iter([0, 1, 2]) # t is now an iterator
>>> u = iter(t) # does it error…?

What happens when you call iter on an iterator?

You get the same iterator back. So… technically speaking, iterators also implement
the iterable interface! (Unless they’re user-defined iterators that didn’t implement
the __iter__ method, but you don’t need to worry about that this semester…)

>>> t == u
True
>>> t == iter(t)
True

ITERATORS E2

Let’s implement the list function. Here we have the function specification:

def list(iterable):
 “””Creates a list.

 >>> list(range(4))
 [0, 1, 2, 3]
 >>> list(iter(range(4)))
 [0, 1, 2, 3]
 ”””
 # YOUR CODE HERE

ITERATORS E2

Let’s implement the list function. Here we have the function specification:

def list(iterable):
 iterator = iter(iterable)
 result = []
 try:
 while True:
 result.append(next(iterator))
 except StopIteration:
 return result

GENERATORS

GENERATORS (REVIEW)

Generator functions are functions containing yield statements.
▸ These functions return generators when called.

Generators are iterators obtained by calling a generator function.
▸ Every time you call next on a generator, it goes through the generator

function body until it hits a yield – at which point it yields the specified
value. The state of the function with respect to this generator is saved, so
whenever next is called again on the generator, execution of the
function body will continue from where it left off.

To create a fresh iterator, just call the generator function again.

GENERATORS (REVIEW)

Here we have a function that returns an iterator over the natural numbers:

def gen_naturals():
 curr = 0
 while True:
 yield curr
 curr += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at …>
>>> next(gen)
0
>>> next(gen)
1

GENERATORS (REVIEW)

`yield from` is like yield, except it yields all values from an iterable.

yield from <expr>
– is equivalent to –
for x in <expr>:
 yield x

GENERATORS (REVIEW)

square = lambda x: x * x
def many_squares(s):
 for x in s:
 yield square(x)
 yield from [square(x) for x in s]
 yield from map(square, s)

>>> list(many_squares([1, 2, 3]))
[1, 4, 9, 1, 4, 9, 1, 4, 9]

GENERATORS E1

>>> def gen_y():
... yield (7, 8, 9)
...
>>> def gen_yf():
... yield from (7, 8, 9)
...
>>> next(gen_y())

>>> next(gen_yf())

GENERATORS E1

>>> def gen_y():
... yield (7, 8, 9)
...
>>> def gen_yf():
... yield from (7, 8, 9)
...
>>> next(gen_y())
(7, 8, 9)

>>> next(gen_yf())
7

GENERATORS E2

>>> def countup():
... yield from [1, 2, 3]
... return 4
... yield from [5, 6]
...
>>> list(countup)

What would Python print?

GENERATORS E2

>>> def countup():
... yield from [1, 2, 3]
... return 4
... yield from [5, 6]
...
>>> list(countup)

What would Python print?

Trick question, countup is just a generator function (NOT a generator; NOT an
iterable)

(TypeError: ‘function’ object is not iterable)

GENERATORS E3

>>> def countup():
... yield from [1, 2, 3]
... return 4
... yield from [5, 6]
...
>>> list(countup())

What would Python print?

GENERATORS E3

>>> def countup():
... yield from [1, 2, 3]
... return 4
... yield from [5, 6]
...
>>> list(countup())

What would Python print?

[1, 2, 3]

Return results in a StopIteration (incl. the implicit return at the end of the
function). The value returned is not actually returned by the generator function.

GENERATORS E4

>>> def myst(iterable, n):
... if n <= 0: return
... iterator = iter(s0)
... yield next(iterator)
... if n % 2:
... yield from myst(iterable, n - 1)
... else:
... yield from myst(iterator, n - 1)
...
>>> gen = lambda: (yield from range(7))
>>> [e for e in myst(gen(), 3)]

What would Python print?

GENERATORS E4

>>> def myst(iterable, n):
... if n <= 0: return
... iterator = iter(s0)
... yield next(iterator)
... if n % 2:
... yield from myst(iterable, n - 1)
... else:
... yield from myst(iterator, n - 1)
...
>>> gen = lambda: (yield from range(7))
>>> [e for e in myst(gen(), 3)]

[0, 1, 2]. Note that `yield from myst(iterable, n - 1)` is
equivalent to `yield from myst(iterator, n - 1)` in this case.
(Why?)

GENERATORS E5

>>> def myst(iterable, n):
... if n <= 0: return
... iterator = iter(s0)
... yield next(iterator)
... if n % 2:
... yield from myst(iterable, n - 1)
... else:
... yield from myst(iterator, n - 1)
...
>>> [e for e in myst(range(7), 3)]

Now what would Python print?
(This is exactly the same code as last time, except we’re calling myst on a
different iterable.)

GENERATORS E5

>>> def myst(iterable, n):
... if n <= 0: return
... iterator = iter(s0)
... yield next(iterator)
... if n % 2:
... yield from myst(iterable, n - 1)
... else:
... yield from myst(iterator, n - 1)
...
>>> [e for e in myst(range(7), 3)]

[0, 0, 1]. Why? Because iter is returning a fresh iterator every time! (In the
last case, it wasn’t – because the iterable that iter was being called on was an
iterator. Note, again: iterators are technically iterables because you can call
iter on them.)

GENERATORS E6

>>> def gen_e6(n):
... yield n / (n - 1)
... yield from gen_e6(n - 1)
...
>>> e6 = gen_e6(3)
>>> next(e6)

>>> next(e6)

>>> next(e6)

>>> next(e6)

GENERATORS E6

>>> def gen_e6(n):
... yield n / (n - 1)
... yield from gen_e6(n - 1)
...
>>> e6 = gen_e6(3)
>>> next(e6)
1.5

>>> next(e6)
2.0

>>> next(e6)
ZeroDivisionError: division by zero

>>> next(e6)
StopIteration

GENERATORS 1.5.1

Write a generator that combines identically-indexed elements of two iterators
using a given combiner function. When either iterator runs out of elements, the
generator as a whole should also run out of elements.

def combiner(iterator1, iterator2, combiner):
YOUR-CODE-HERE

>>> from operator import add
>>> evens = combiner(gen_naturals(), gen_naturals(), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4

GENERATORS 1.5.1/2

def combiner(iterator1, iterator2, combiner):
while True:

yield combiner(next(iterator1), next(iterator2))

WWPP?

>>> nats = gen_naturals()
>>> doubled_nats = combiner(nats, nats, add)
>>> next(doubled_nats)

>>> next(doubled_nats)

GENERATORS 1.5.1/2

def combiner(iterator1, iterator2, combiner):
while True:

yield combiner(next(iterator1), next(iterator2))

WWPP?

>>> nats = gen_naturals()
>>> doubled_nats = combiner(nats, nats, add)
>>> next(doubled_nats)
1
>>> next(doubled_nats)
5

GENERATORS 1.5.3

Write a generator function that goes through all subsets of the positive integers
from 1 to n. Each call to this generator’s next method will return a list of subsets
of the set [1, 2, …, n], where n is the number of times next was
previously called.

def generate_subsets():
“””
>>> subsets = generate_subsets()
>>> for _ in range(3):
... print(next(subsets))
...
[[]]
[[], [1]]
[[], [1], [2], [1, 2]]
“””
YOUR-CODE-HERE

GENERATORS 1.5.3

def generate_subsets():
YOUR-CODE-HERE

Thought process:
▸ Uh…
▸ Okay, well it’s a generator function so we’re going to have to yield stuff
▸ Looking at the doctest, it seems as if we always want the positive integers

to be in order. We’re just splitting them up
▹ [[]]
▹ [[], [1]]
▹ [[], [1], [2], [1, 2]]

▸ What do you notice? Each successive yield is just everything from before,
and also everything from before with the latest value of n tacked onto the
end

GENERATORS 1.5.3

def generate_subsets():
YOUR-CODE-HERE

In other words,
▸ n = 0:

[[]]
▸ n = 1:

[[], [1]], which is really just
[[] AND [] + [1]]

▸ n = 2:
[[], [1], [2], [1, 2]], which is really just
[[], [1] AND [] + [2], [1] + [2]]

▸ n = 3:
[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]], or
[... AND [] + [3], [1] + [3], [2] + [3], [1, 2] + [3]]

GENERATORS 1.5.3

def generate_subsets():
 n, subsets = 1, [[]]
 while True:
 yield subsets
 subsets += [s + [n] for s in subsets]
 n += 1

STREAMS

STREAMS

Streams are linked lists that are evaluated lazily:

▸ The rest won’t be computed until we ask for it
▸ After we ask for it, the result will be remembered

Scheme stream interface:

▸ car gives us the first element of the stream
▸ nil is the empty stream
▸ cons-stream: like cons, except the rest isn’t evaluated at first
▸ cdr-stream: like cdr, but tells the stream to actually compute the rest

if it hasn’t already. Note: don’t use cdr with streams!

STREAMS

Non-required material, but you’ll probably run into it so

Scheme promises (force/delay)

▸ How lazily evaluated expressions are actually implemented in Scheme
▸ Spec description
▸ Promise: a delayed expression

▹ Can be “forced” (already evaluated and now cached)
▹ or “not forced” (not evaluated yet)

▸ If you display a stream in the interpreter, you’ll see this

scm> (cons-stream 1 2)
(1 . #[promise (not forced)])

http://cs61a.org/articles/scheme-spec.html#promises-and-streams
http://cs61a.org/articles/scheme-spec.html#promises-and-streams

STREAMS

What is the advantage of using a stream over a linked list?

STREAMS

What is the advantage of using a stream over a linked list?

Elements won’t be evaluated unnecessarily if they are never used… meaning
efficient space usage! Also, streams allow for the representation of
infinite-length sequences.

On streams versus iterators:
Every time you call next on an iterator, it changes. The nice thing about
streams is that they never change.

STREAMS E1

We attempt to define an infinite sequence of natural numbers.

(define (naturals n)
 (cons n (naturals (+ n 1))))

(define nat (naturals 0))

What happens?

STREAMS E1

We attempt to define an infinite sequence of natural numbers.

(define (naturals n)
 (cons n (naturals (+ n 1))))

(define nat (naturals 0))

Error: maximum recursion depth exceeded

STREAMS E1

That didn’t work, so we turn to streams instead.

(define (naturals n)
 (cons-stream n (naturals (+ n 1))))

(define nat (naturals 0))

(car nat)

(car (cdr-stream nat))

(car (cdr-stream (cdr-stream nat)))

STREAMS E1

That didn’t work, so we turn to streams instead.

(define (naturals n)
 (cons-stream n (naturals (+ n 1))))

(define nat (naturals 0)) → nat

(car nat) → 0

(car (cdr-stream nat)) → 1

(car (cdr-stream (cdr-stream nat))) → 2

STREAMS E1

That didn’t work, so we turn to streams instead.

(define (naturals n)
 (cons-stream n (naturals (+ n 1))))

(define nat (naturals 0)) → nat

(cdr nat)

(cdr-stream nat)

(cdr nat)

STREAMS E1

That didn’t work, so we turn to streams instead.

(define (naturals n)
 (cons-stream n (naturals (+ n 1))))

(define nat (naturals 0)) → nat

(cdr nat) → #[promise (not forced)]

(cdr-stream nat) → (1 . #[promise (not forced)])

(cdr nat) → #[promise (forced)]

STREAMS 2.1.1 - WWSD?

scm> (define (has-even? s)
 (cond ((null? s) False)
 ((even? (car s)) True)
 (else (has-even? (cdr-stream s)))))
has-even?
scm> (define ones (cons-stream 1 ones))
ones
scm> (define twos (cons-stream 2 twos))
twos
scm> ones

scm> (cdr-stream ones)

scm> (has-even? ones)

scm> (has-even? twos)

STREAMS 2.1.1 - WWSD?

scm> (define (has-even? s)
 (cond ((null? s) False)
 ((even? (car s)) True)
 (else (has-even? (cdr-stream s)))))
has-even?
scm> (define ones (cons-stream 1 ones))
ones
scm> (define twos (cons-stream 2 twos))
twos
scm> ones
(1 . #[promise (not forced)])
scm> (cdr-stream ones)
(1 . #[promise (forced)])
scm> (has-even? ones)
Runs forever
scm> (has-even? twos)
True

STREAMS 2.1.2

Implement map-stream, which maps a function f to a stream s.

(define (map-stream f s)
 ; YOUR-CODE-HERE
)

scm> (define evens (map-stream (lambda (x) (* x 2)) nat))
evens
scm> (car (cdr-stream evens))
2
scm> (car (cdr-stream (cdr-stream evens)))
4

STREAMS 2.1.2

(define (map-stream f s)
 ; YOUR-CODE-HERE
)

Approach (what do we know?):
▸ We need to create a new stream
▸ We need to apply the function to every element
▸ We need to not think about the enormity of applying a function to every

element in an infinite sequence, and instead consider the problem
inductively

STREAMS 2.1.2

(define (map-stream f s)
 ; YOUR-CODE-HERE
)

Approach (what do we know?):
▸ We need to create a new stream

▹ So we’ll use cons-stream
▸ We need to apply the function to every element

▹ So we’ll do (f (car s))
▸ We need to not think about the enormity of applying a function to every

element in an infinite sequence, and instead consider the problem
inductively
▹ So we’ll recurse, creating the rest of the stream via (map-stream

f (cdr-stream s)). Our base case will be an empty stream

STREAMS 2.1.2

(define (map-stream f s)
 (if (null? s) nil
 (cons-stream (f (car s))
 (map-stream f (cdr-stream s))))
)

STREAMS 2.1.3

Consider the following two implementations of filter-stream. One is
correct and one is not. Which is the incorrect one, and why?

(define (filter-stream f s)

 (if (null? s) nil

 (let ((rest (filter-stream f (cdr-stream s))))

 (if (f (car s))

 (cons-stream (car s) rest)

 rest))))

(define (filter-stream f s)

 (cond ((null? s) nil)

 ((f (car s)) (cons-stream (car s) (filter-stream f (cdr-stream s))))

 (else (filter-stream f (cdr-stream s)))))

STREAMS 2.1.3

The first one is incorrect, because it recursively creates the rest of the stream
either until it hits the end of s or until it hits the maximum recursion depth. We
want lazy evaluation, so we shouldn’t be constructing the entire stream at once!

(define (filter-stream f s)

 (if (null? s) nil

 (let ((rest (filter-stream f (cdr-stream s))))

 (if (f (car s))

 (cons-stream (car s) rest)

 rest))))

(define (filter-stream f s)

 (cond ((null? s) nil)

 ((f (car s)) (cons-stream (car s) (filter-stream f (cdr-stream s))))

 (else (filter-stream f (cdr-stream s)))))

STREAMS 2.1.4

Write a function, range-stream, that takes in two integers start and end
and returns the same thing that range(start, end) would... but as a stream.

(define (range-stream start end)
 ; YOUR-CODE-HERE
)

scm> (define rs (range-stream 1 3))
rs
scm> (car rs)
1
scm> (car (cdr-stream rs))
2
scm> (cdr-stream (cdr-stream rs))
()

STREAMS 2.1.4

(define (range-stream start end)
 ; YOUR-CODE-HERE
)

Thought process:
▸ We have to create a stream where the first element is start
▸ The “rest” of the stream should be another stream whose first element is start + 1
▸ ^ Sounds like recursion to me. We can just make the rest of the stream be the return

value of a range-stream call
▸ The base case, then, will be when start >= end. In this case, there’s really no range

to speak of – so we return an empty stream

STREAMS 2.1.4

(define (range-stream start end)
 ; YOUR-CODE-HERE
)

Thought process:
▸ We have to create a stream where the first element is start

▹ (cons-stream start ...)
▸ The “rest” of the stream should be another stream whose first element is start + 1

▹ (cons-stream (+ start 1) ...)
▸ ^ Sounds like recursion to me. We can just make the rest of the stream be the return

value of a range-stream call
▹ (cons-stream start (range-stream (+ start 1) end))

▸ The base case, then, will be when start >= end. In this case, there’s really no range
to speak of – so we return an empty stream
▹ (if (>= start end) nil ...)

STREAMS 2.1.4

(define (range-stream start end)
 (if (>= start end) nil
 (cons-stream start (range-stream (+ start 1) end)))
)

STREAMS 2.1.5

Write a function, slice, that returns a list containing the elements of stream
from index start to index end - 1. If you run out of elements in stream, just
cut the list short.

(define (slice stream start end)
 ; YOUR-CODE-HERE
)

STREAMS 2.1.5

(define (slice stream start end)
 ; YOUR-CODE-HERE
)

Thought process:
▸ We’re returning a list! Back to cons and list and append… and no lazy evaluation.

We need everything now
▸ Let’s just recurse our way through stream decrementing start until it hits 0, and

then start adding elements to our output list
▸ How will we know when to stop adding stuff? We want end - start elements

overall… oh, we should also decrement end in that last step. Then, when start
reaches 0, we’ll know we want to add end - 0 elements

▸ So we continue, decrementing end and adding elements to our list, until end is equal
to 0. At this point, we’ll be done

STREAMS 2.1.5

(define (slice stream start end)
 ; YOUR-CODE-HERE
)

Thought process, continued:
▸ We can use cons since it fits: we have an element and a “rest” list to use in the

(cons element rest) formula
▹ Specifically, we have (cons (car stream) <recursive call>)

▸ We should also check if stream is empty, since it’s not guaranteed that our indices
are in-range

STREAMS 2.1.5

Bringing it all together, we have

(define (slice stream start end)
 (cond ((or (= end 0) (null? stream)) nil)
 ((> start 0) (slice (cdr-stream stream)
 (- start 1)
 (- end 1)))
 (else (cons (car stream)
 (slice (cdr-stream stream)
 0
 (- end 1)))))
)

STREAMS 2.1.6

Let’s combine infinite-length streams using zip-with, which accepts a function
f and two streams (xs and ys) and returns a single stream containing every pair
of corresponding elements combined with f.

If the elements in xs were x1, x2, x3, … and the elements in ys were y1,
y2, y3, …, then (zip-with f xs ys) would return a stream with the elements
(f x1 y1), (f x2 y2), (f x3 y3), ….

(define (zip-with f xs ys)
 (if (or (null? xs) (null? ys)) nil
 (cons-stream (f (car xs) (car ys))
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))
)

STREAMS 2.1.6

As an example, we can create the even numbers by adding every natural number to
Itself (s.t. the output sequence is 0 + 0, 1 + 1, 2 + 2, …).

scm> (define evens (zip-with + (naturals 0) (naturals 0)))
evens
scm> (slice evens 0 10)
(0 2 4 6 8 10 12 14 16 18)

STREAMS 2.1.6

How would we define a stream containing the factorials of all numbers in order
(starting at 0!) ? Use zip-with!

(define factorials
 ; YOUR-CODE-HERE
)

scm> (slice factorials 0 10)
(1 1 2 6 24 120 720 5040 40320 362880)

STREAMS 2.1.6

(define factorials
 ; YOUR-CODE-HERE
)

Thought process:
▸ zip-with? What does that do again? Oh yeah…
▸ Factorials? What are those again? Oh yeah…

▹ 0! = 1
▹ 1! = 1 * 0! = 1 * 1
▹ 2! = 2 * 1! = 2 * 1 * 1
▹ 3! = 3 * 2! = 3 * 2 * 1 * 1

▸ Interesting. It seems like we’d want to combine elements with * (multiplication)
▸ Well, based on the recurrences above, we’d want to multiply every natural number with

the previous factorial. But we’re computing the factorials! This is going to be trippy...

STREAMS 2.1.6

(define factorials
 (cons-stream 1 (zip-with * factorials (naturals 1)))
)

▸ cons-stream is kind of like a base case (it’s the anchor; the first element of the
output stream)

▸ Observing the sequence:
▹ First element is 1 (obvious)
▹ Second element is [^ that element] * 1 = 1 * 1 = 1
▹ Third element is [^ that element] * 2 = 1 * 2 = 2
▹ Fourth element is [^ that element] * 3 = 2 * 3 = 6
▹ Fifth element is [^ that element] * 4 = 6 * 4 = 24
▹ …

▸ I always thought this was neat af

STREAMS 2.1.6

Last one. How would we define a stream containing the Fibonacci numbers, starting
with 0 and 1? Use zip-with!

(define fibs
 ; YOUR-CODE-HERE
)

scm> (slice fibs 0 10)
(0 1 1 2 3 5 8 13 21 34)

STREAMS 2.1.6

(define fibs
 ; YOUR-CODE-HERE
)

Let’s do this
▸ We’ve been computing Fibonacci numbers since day 0

▹ F(0) = 0
▹ F(1) = 1
▹ F(2) = F(0) + F(1)
▹ F(3) = F(1) + F(2)
▹ …

▸ Looks like we’re gonna be combining with + (addition)
▸ Two “base cases”, 0 and 1, and then we’ll zip-with + a fibs

and a staggered fibs

STREAMS 2.1.6

(define fibs
 (cons-stream 0 (cons-stream 1
 (zip-with + fibs (cdr-stream fibs))))
)

It’s so beautiful...

TURTLE

RECURSIVE ART CONTEST

It’s optional... but it’s also cool. Even if you don’t enter the contest, try
playing around with the turtle graphics system for a bit!

Note: you can probably sell a lot of things as a recursive process

VECTOR GRAPHICS

Represent images using geometric primitives (points, lines, curves,
shapes, polygons…) instead of pixel values. Based on vectors passing
through control points, hence the name

As it happens, turtle graphics are vector-based!

DEMO: IMAGE VECTORIZATION

Something you can do with turtle graphics:

▸ Take a photograph (or grab any image you like)
▸ Convert the image to SVG format (https://www.vectorizer.io/)
▸ Implement turtle functions for all primitives in the VG format you’re

using. This may only be path (a composite Bézier curve)!
▸ Convert the vector image into turtle code (using the primitives you

just wrote) via a parser
▸ Let the turtle do its thing
▸ Profit

As I can show… (edit: next time!)

https://www.vectorizer.io/

DISCUSSION ATTENDANCE

http://tiny.cc/5184

http://tiny.cc/5184
http://tiny.cc/5184

QUIZ 9

