
CS 61A
DISCUSSION 8

November 3, 2016

TOPICS FOR TODAY

- Interpreters

- Tail recursion

* despite the connotations of the image in the title slide, Python
isn’t actually optimized for tail recursion.

ANNOUNCEMENTS

- The Scheme project has been released! Part 1 is
due in a week, which means you may as well
pretend that the whole project is due in a week. :)

(While you’re at it, you should also pretend that the
extra credit question is required.)

INTERPRETERS

Interpreters

tl;dr An interpreter is a program that reads, evaluates, and executes other
programs (i.e code) on a line-by-line basis.

Basically, it takes in code and evaluates it (“applying” functions to arguments
when necessary). How? As in the lab:

▸ Step 1: Read the code (treat it as a string) and turn it into whatever format
the interpreter wants to work with
▹ Generally means tokenizing the code (breaking it into pieces) and

sticking it into data structures in the underlying interpreter language
▹ e.g. Reading in Scheme code and turning it into Pair objects in

Python (remember, Scheme code is really just a bunch of primitives
and lists)

Interpreters

▸ Step 2: Once the code is in an acceptable format, continually “evaluate”
and/or “apply” the expressions until everything’s been executed.

TAIL
RECURSION

Tail recursion explained

tl;dr It’s a technique that increases spatial efficiency during recursion.

How? By having the recursive call be the last thing to happen in the
function body. If this is the case, then the frame from which the recursive
call sprung is now redundant and we can kick it off the stack! (None of the
frame’s information will ever be needed, since the recursive call concluded
the execution of its associated function body.)

Possible Q: What if there are nonlocal variables and some kind of
multi-function recursion setup?
A: That s*** isn’t in Scheme, and Python doesn’t support tail recursion
anyway.

Tail recursion rephrased

Tail recursion means turning all of your recursive calls into tail calls. (What
is a tail call? It’s technically defined as a call in a tail context – but if you
find that confusing, just think of it as a call that’s the last thing to happen in
the function body.)

In a tail-optimized language implementation, tail calls let us reuse frames.
Since the tail call is the last thing that happens in a function body, we don’t
need to retain data from a frame that makes a tail call. Thus, when we
execute the tail call we can just overwrite the old frame in memory – we
won’t have to create a new one.

This means constant space!
(/no stack overflows from excessive recursion depth)

Tail contexts

[Disclaimer: You can memorize this if you want, but as far as I’m concerned
just know that it’s a tail context if it’s a spot in the function body after which
the function is finished, i.e. nothing else will happen in the function body
(this function body, at least) afterward.]

- last subexpression in a lambda or a let’s body
- the second or third expression in an if form
- any of the non-predicate subexpressions in a cond form
- the last subexpression in an and / or form
- the last subexpression in a begin’s body

If the expression in any of those contexts is a procedure call, it’s a tail call. It
might not be a recursive tail call (the kind that saves space), but it’s a tail call.

Defining tail-recursive procedures

Normally you just create a helper function and pass along all the information
you need as extra arguments (for example, the return value you’re building
up).

(define (factorial n)

 (define (factorial-helper n result)

 (if (= n 0) result

 (factorial-helper (- n 1) (* n result))

)

)

 (factorial-helper n 1)

)

DISCUSSION ATTENDANCE

http://tiny.cc/threeeggs

http://tiny.cc/threeeggs
http://tiny.cc/threeeggs

QUIZ 8

