
CS 61A
DISCUSSION 7

October 27, 2016

TOPICS FOR TODAY

- Scheme

- Yeah that’s about it

PRELIMINARY
NOTES

Announcements

- P/NP deadline is tomorrow. Don’t P/NP if
you want to major in CS

- HW9 deadline extended to Monday

Midterm 2 Recap

It had a lot of tricky parts (and 7b was just
tricky as a whole). Any questions or
comments?

Learning Scheme: “What
happens if…? ”

- TEST IT IN THE INTERPRETER

- It’s easy now! (scheme.cs61a.org)

To draw box-and-pointer diagrams, you can
use (demo ‘autopair) in the above
interpreter

http://scheme.cs61a.org

Learning Scheme: “What
happens if…? ” (cont.)

Scheme reference:
http://inst.eecs.berkeley.edu/~cs61a/su16/p
roj/scheme/scheme-spec.html

Built-in procedure reference:

http://inst.eecs.berkeley.edu/~cs61a/su16/p
roj/scheme/scheme-primitives.html

http://inst.eecs.berkeley.edu/~cs61a/su16/proj/scheme/scheme-spec.html
http://inst.eecs.berkeley.edu/~cs61a/su16/proj/scheme/scheme-spec.html
http://inst.eecs.berkeley.edu/~cs61a/su16/proj/scheme/scheme-spec.html
http://inst.eecs.berkeley.edu/~cs61a/su16/proj/scheme/scheme-primitives.html
http://inst.eecs.berkeley.edu/~cs61a/su16/proj/scheme/scheme-primitives.html
http://inst.eecs.berkeley.edu/~cs61a/su16/proj/scheme/scheme-primitives.html

“Cute” Scheme Infographics

- List constructors

- Functions as data

- Common list errors

http://csillustrated.berkeley.edu/PDFs/posters/list-constructors-1-poster.pdf
http://csillustrated.berkeley.edu/PDFs/posters/functions-as-data-1-poster.pdf
http://csillustrated.berkeley.edu/PDFs/posters/list-constructors-2-mistakes-poster.pdf

SCHEME

“Why are we learning Scheme?”

- To get experience with different programming
languages (functional programming!)

- Similar to Python: dynamically typed, strict
evaluation order, first-class functions

- Mainly (IMO) because we can write an interpreter for
it

- Scheme: “the world’s most unportable programming
language” haha (...until CS 61A Project 4 becomes a
standard?)

(Disclaimer for people trying to
sue me)

A large portion of the following slide content
has been borrowed from the unprinted
portion of this week’s discussion packet.

Everything in Scheme

Everything in Scheme is either a primitive or a
combination!

Combinations are formatted as Scheme lists…!

Take the combination (define a 4)...

For the purposes of program interpretation, this is just
a well-formed list containing the elements ‘define, ‘a,
and 4!

Primitives

- 2, 2.1, #t, ...

- the only false value in Scheme is #f (or, equivalently,
False / false). Everything else is true!

Primitives are self-evaluating…! They’re automatically
evaluated, and they evaluate to themselves. Also,
‘<primitive> is equivalent to <primitive>.

Symbols

- Symbols are immutable strings (where there
can only be one copy of any given symbol).

- Think of them like variable names; think of them
like the code itself. That’s how we’ll use them in
our study of interpreters.

It’s less complicated than it might seem at first!

Symbols, cont.

- “There can only be one copy of any given symbol”
- This applies very easily to variable names if
you’re perceiving symbols that way. (Think of what
happens if you assign to a variable name twice! There
can’t be more than one variable with the same name
in memory.)

Symbols are case-insensitive and composed of
the following characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz012345678
9!$%&*/:<=>?@^_~+-.

Symbols, cont.

To get a symbol object, use the quote operator:

scm> (define x 4)

x

scm> ‘x ; the symbol x

x

scm> x ; VALUE of the symbol x

4

Symbol usage

Symbols are mainly used as keys in data structures;
you could keep a dictionary from symbols to values if
you were using symbols as variable names :)

But this is interpreter stuff.

You don’t really have to worry about this yet...

So as a tl;dr: generally, you don’t really have to think
about manipulating symbols for normal 61A
implementations (i.e. non-interpreter stuff).

Defining variables and
procedures

(Procedure: the word for a function in Scheme)

define binds a value to a name (just like `=` in
Python). Note that define always returns a symbol of
the name that has just had a value assigned to it!

(define a 4) ; variable

(define (identity x) x) ; procedure

Definition Syntax

(define <var name> <value>)

(define (<fn name> <params>) <body>)

More examples:
scm> (define a 3)

a

scm> (define (foo x) (+ x 2))

foo

scm> (foo a)

5

p1, Q1

Call Expressions

(<procedure> <arguments>)

Evaluation (same as in Python):

- Evaluate the operator, then evaluate each of
the operands

- Apply the operator to the evaluated operands

Important built-in functions

+, -, *, /

equal?, =, >, >=, <, <=

Testing for equality

= is used for numbers (and numbers only!)

equal? is used for everything else (...although it
actually works for numbers as well)

p2, Q2

Special Forms

Expressions that look like function calls (because
they’re surrounded by parentheses!), but have
special functionality in that they don’t follow normal
order of evaluation

define, if, and, or, not, lambda, let

Basic special form usage

if syntax: (if <condition> <true-result> <false-result>)

scm> (if (> 4 5) (/ 1 0) 42)

42

scm> (or #t (/ 1 0))

true

scm> (and False (/ 1 0))

false

scm> (and 1 2 3)

3

p2, Q3

Lambdas and defining functions

(lambda (<params>) <expression>)

Notes:

- Much like Python, lambdas are first-class function
values and you create new frames when you call them.

- <expression> isn’t evaluated until the lambda is called.

(define (<fn> <params>) <body>) is automatically
translated to (define <fn> (lambda (<params>)
<body>)).

Lambda examples

scm> (define square (lambda (x) (* x x)))

square

scm> (square 4)

16

scm> ((lambda (x y) (+ x y)) 6 7)

13

Quick Quiz (WWSP)

((lambda (x) (x x)) (lambda (y) 4))

Quick Quiz (WWSP)

((lambda (x) (x x)) (lambda (y) 4))

4

Quick Quiz #2 (WWSP)

((lambda (x) (x x)) (lambda (y) (if (equal? y 4) y (x 4))))

Quick Quiz #2 (WWSP)

((lambda (x) (x x)) (lambda (y) (if (equal? y 4) y (x 4))))

Error (unknown identifier: x)… but it doesn’t have to be
when we get to mu procedures

Let

(let ((<symbol-1> <value-1>)

 …
 (<symbol-n> <value-n>))

 <body>)

is equivalent to ((lambda (<symbol-1> … <symbol-n>)
<body>) <value-1> … <value-n>)

It’s basically saying “assign these variables to these
values, and then execute this code with those assignments
in effect”

p2, Q4-5

Scheme lists

They’re like linked lists in Python (they’re made
up of “pairs”).

Pairs intro

(cons <elt1> <elt2>) creates a pair containing the
elements <elt1> and <elt2>.

(car pair) selects the first element of a pair.

(cdr pair) selects the second element of a pair.

nil, (), ‘() are equivalent and represent the empty list.

Suggestion: with pairs it sometimes helps to draw them out as
box-and-pointer diagrams (esp. for car/cdr predictions).

Well-formed lists

A well-formed list is a sequence of pairs where the second
element of each pair is ALWAYS either another pair or nil.

Malformed list: a sequence of pairs where the second
element of ANY of those pairs is something other than
another pair or nil.

The dot

The dot delimits the first and second element of a pair.
Since we’re talking pairs, you’ll never have multiple
elements after a dot!

Well-formed lists, cont.

scm> (cons 2 3)

(2 . 3)

scm> (cons 2 (cons 3 nil))

(2 3)

scm> (cdr (cons 2 3))

3

scm> (cdr (cons 2 (cons 3 nil)))

(3)

^difference between well-formed and malformed lists:
well-formed lists don’t have dots in final interpreter output

Well-formed lists, cont.

Rule for displaying a pair in the interpreter:

- Use a dot to separate the first and second elements of a
pair.

- If the second element is also a pair (i.e. the dot is
immediately followed by an open parenthesis), then
remove the dot and the parenthesis pair.

In this way, (cons 1 (cons 1 2)) becomes (1 . (1 .
2)) and finally (1 1 . 2) when we break it down into the
interpreter’s final output.

List operators

(list <args>)

- takes zero or more arguments and returns a well-formed
list of its arguments (i.e. each argument is in the car field
of its respective pair).

(list <arg1> <arg2>) → (<arg1> <arg2>)

Quoting does the same thing... but expressions that are
not self-evaluating (i.e. variables or procedure calls) will
not be evaluated.

The difference between list and ‘

scm> (define a 1)

a

scm> (define b 2)

b

scm> (list a b)

(1 2)

scm> ‘(a b)

(a b)

List examples

scm> (equal? ‘(1 2) (list 1 2))

true

scm> ‘(1 . (2 3))

(1 2 3)

scm> ‘(define (square x) (* x x))

(define (square x) (* x x))

append

A very useful procedure for concatenating lists that never
seems to officially get covered. Takes in zero or more lists (not
list elements!), and returns a single well-formed list containing
all the elements of the input lists, in order.

scm> (append <lst1> <lst2> …)

(<lst1 elements> <lst2 elements> …)

If you pass in no arguments, it returns nil. It also has robust
behavior for random nils as arguments:

scm> (append nil ‘(1 (2)) nil ‘(3) nil nil ‘(5))

(1 (2) 3 5)

p3-4, Q1-4

If time:
p5-6, Q1-3

CLOSING
STUFF

Discussion Quiz 7

5 minutes; get as far as you can

(maybe make 2b a WWSP)

Quiz solutions

Q1a. Parentheses either denote procedure calls or special
forms. Importantly, note that unlike in the case of Python
every set of parentheses counts: you can never leave them
out and you can never add more.

In Python, you can do this [if you hate yourself]:

(((3))) + ((((4)))) # evaluates to 7

Scheme won’t let that fly.

[If you try to run (+ (((3))) ((((4))))), it will think that
(3) is a function call and immediately error.]

Quiz solutions (Q1 cont.)

Q1c. (See earlier slides.) A symbol is like a variable name.
It’s like the code itself. Symbols will come in handy when
we deal with interpreters. For now you don’t really need to
worry about them, though.

Quiz solutions (Q2)

Q2a. ‘((list 2 3)) → ((list 2 3))

Q2b. (list ‘(2 3)) → ((2 3))

Q2c. (x 3 4) → Error: cannot call: 0

Q2d. (y 3 4) → 7

Quiz solutions (Q3)

(I’ll LaTeX these up nicely later. For now...)

Q3a. ‘(2 . 3 4) → Error; you can only have a single element
after a dot

Q3b. (cons (list '(two) '((3)) nil) 4)

Quiz solutions (Q3 cont.)

Q3c. (cons 2 '(list nil))

Q3d. (list (append '(2) '(3) nil) 4)

Q3e. '(2 . (3 . (4)))

Quiz solutions (Q4)

(define (cadr lst) (car (cdr lst)))

(define (cddr lst) (cdr (cdr lst)))

(define (finish-sort lst)

 (cond ((or (null? lst) (null? (cdr lst))) lst)

 ((> (car lst) (cadr lst)) (append (list (cadr lst))

 (list (car lst))

 (cddr lst)))

 (else (let ((rest (finish-sort (cdr lst))))

 (if (< (car lst) (car rest))

 (cons (car lst) rest)

 (append (list (car rest))

 (list (car lst))

 (cdr rest)))))

)

)

ATTENDANCE

- tiny.cc/ilovecs

- Comes with a survey; 2/3rds-semester
feedback? :)

http://tiny.cc/ilovecs

CLOSING REMARK

Enjoy the rest of your Thursday!

