
CS 61A
DISCUSSION 4

September 29, 2016

TOPICS FOR TODAY

- List mutation

- Growth

- Nonlocality

ATTENDANCE

Link: http://tiny.cc/gammafish

(lambda t: root(t))(tree(52, [tree(52)]))

http://tiny.cc/gammafish

LIST
MUTATION

List mutation

means that you change a list in-place (i.e. you
modify the same list in memory)

instead of, say, creating a list and just
changing a variable name to point to that
new list.

Some list methods for mutation

▸ append(elt) - appends element to end of list
▸ insert(i, elt) - inserts element at index i
▸ remove(elt) - removes first-seen element with

given value (otherwise errors)
▸ pop(i) - removes and returns element at index i

GROWTH
(ASYMPTOTIC
ANALYSIS)

Growth explained

Growth: how much of a resource (TIME or SPACE) our program
consumes as the input size gets bigger and bigger

Order: how we quantify that growth. Also known as time/space
complexity.
▸ Example orders: O(1), O(log(n)), O(n), O(nlog(n)), O(n2),

O(n3), and O(xn)
▸ Drop constants and lower-order terms! Growth-wise,

they’re not important

Order of growth is extremely important to take into account
when designing algorithms!

To visualize
Just plot your algorithm runtime (which you can look at as the number of
operations it needs to execute) against n, where n is the input size. The
shape of the resulting plot will be the order of growth.

It may also help

to draw the call tree.

Basic example

def mystery(n):
total = 0
for i in range(n):

total += constant(i)
return total

What is the order of growth of mystery as a function of n?

Basic example

def mystery(n):
total = 0
for i in range(n): # loop n times

total += constant(i) # each iteration, do constant work
return total

What is the order of growth of mystery as a function of n?
O(n)

Trickier example

def mystery(n):
total = 0
for i in range(1, n):

total *= 2
if i % n == 0:

total *= mystery(n - 1) * mystery(n - 2)
elif i == n // 2:

for j in range(1, n):
total *= j

return total

Answer: O(n) [linear work + linear work!]

def mystery(n):
total = 0
for i in range(1, n):

total *= 2
if i % n == 0: # this will never happen

total *= mystery(n - 1) * mystery(n - 2)
elif i == n // 2: # this will only ever happen ONCE

for j in range(1, n):
total *= j

return total

An even trickier example

def f(n):
 i = 2
 while i < n:
 print(i)
 i = i * i

An even trickier example

def f(n):
 i = 2
 while i < n:
 print(i)
 i = i * i

Answer: O(log(logn)).

NONLOCAL

Nonlocality explained

When you say nonlocal x:

You’re saying that in this function, x refers to a variable that was
defined in some parent frame. When you make assignments to x, it
will change the x in the parent frame.

Notes:

- x must be in a parent frame that ISN’T the global frame.

- If you have a nonlocal x, you can’t have a local x. Any time you
refer to x within the function, you’re talking about the x in the
parent frame.

