CS 61A
DISCUSSION 3

September 22, 2016

ANNOUNCEMENTS

- Midterm 1 on Gradescope; regrade requests by Sunday night
- HW 4 released and due today (11:59pm)
- HW 5 released and due next Tuesday

- Maps released and due 9/29; extra credit point if submitted on or
before 9/28. Project party next Wednesday (details on website).

ATTENDANCE

Link: http://tiny.cc/disc03
Secret phrase is on board

http://tiny.cc/disc03

TOPICS FOR TODAY

- Midterm 1 Recap
- Sequences
- Trees

Midterm 1

Congratulations on making it through - and great job overall!
But don’t let up...

0 25

MINIMUM MEDIAN MAXIMUM MEAN STD DEV

0.5 30.5 40.0 2817 779

(Feel free to talk to me if you have any concerns about your
performance.)

Sequences

A sequence is an ordered collection of elements.
Every sequence must have a length and also
allow for element selection (indexing).

“n

Examples: lists [], tuples (), strings

>>> len(([4, 5], 6, 7°)[0])
2

Sequence ldentification

Is a set (e.g. {4}) a sequence? Why or why
not?

Sequence ldentification

Is a set (e.g. {4}) a sequence? Why or why
not?

No; sets aren’t ordered and as a result you
can’t index into them.

Lists are pretty cool

Lists are perhaps the most versatile of our
three main Python sequences.

You can populate a list with different types...

>>>whoa =[1, [1], “one”, {1: 1}, None, True, (1), 1.0]
>>> len(whoa)
8

List creation

To create a list, use either square brackets or the
list constructor.

What happens below?
>>> Ist1 = [4, 2]

>>> Ist2 = list(4, 2)
>>> |stl == [st2

List creation

You can create lists either with square brackets
or with the list constructor.

What happens below?
>>> Ist1 = [4, 2]

>>> |st2 = list(4, 2) # IT ERRORS HERE
>>> |stl == [st2

List creation, continued

You can’t call 1ist on an int! The argument to
the list constructor MUST be an iterable.

>>> list(4) # error!

>>> list((4,)) # this one’s good

[4]

>>> list(‘345’) # so is this one, funnily enough
[‘3’, 4’, 5]

List indexing

You index into the list with 1st[idx], where idx is any
integer from O to len(1st) - 1.

(If the list is empty, you of course can’t index into it
with anything!)

If you use negative integers, it counts from the end of
the list to the beginning. -1is the last index, -2 is the
second-to-last index, ... and so on so forth.

List indexing: example

>>> nns = list(range(5))
>>> nnsl1] = list(range(5))

>>> NNs
[0,[0,1,2,3,4], 2, 3, 4]

>>> nns[-5] + nns[4] >>> nns[5] + nns[-4]
>>> nns[1][1] >>> nns[-6]

>>> nns[-3][3] >>> nns[nns[-4][-4]][-4]

List indexing: example

>>> nns = list(range(5))
>>> nnsl1] = list(range(5))

>>> Nns

[0,[0,1,2, 3, 4], 2, 3, 4]

>>> nns[-5] + nns[4] >>> nns[5] + nns[-4]

4 Error

>>> nns[1][1] >>> nns[-6]

1 Error

>>> nns[-3][3] >>> nns[nns[-4][-4]][-4]

Error 1

One final reminder

Indexing in Python starts at O, not 1!
Don’t forget this!

>>> Ist = [first’, ‘second’]
>>> |st[1]

‘second’

>>> |st[0]

‘first’

List concatenation

You can glue multiple lists together with the + operator.
>>> nns = list(range(l, 4))
>>> nns[1] = list(range(2, 5)) # nns =[], [2, 3, 4], 3]

>>> nns[-2] + nns|1]

>>> nns + [638’] + list(nns|1])

List concatenation

You can glue multiple lists together with the + operator.

>>> nns = list(range(l, 4))

>>> nns[1] = list(range(2, 5)) # nns =[], [2, 3, 4], 3]
>>> nns[-2] + nns|[1]

[2,3,4,2,3,4]

>>> nns + [‘638] + list(nns[1])

[1,[2, 3, 4], 3,638, 2, 3, 4]

To check whether an element is
in a list

>>> your_grades = [a-, ‘a+, ‘@’, ‘a+1]
>>>‘f"in your_grades

False

>>>‘a’ in your_grades

True

List slicing

A list slice gives you back a list that is some subset of the
original list. It is also a copy of that original subset - which
is to say that list slicing always creates a new list in memory.

>>> st =11, 2, 3]
>>> |st[1:3]
[2, 3]

(Difference between indexing and slicing: indexing gives
you one of the elements of the list. Slicing provides you
with a LIST of some of the elements in the list.)

Syntax

You can tell it’s a list slice because there are colons in
the square brackets.

List slicing accepts three arguments, all of which are
technically optional:

>>> Ist[start index: end index + 1: step size]
>>> Ist[start index: end index + 1]

>>> Ist[start index]

>>> Ist[: end index + 1]

>>> Ist[]

Slicing examples

>>> nns = [list(range(4)), 4, 5]
>>> original = nnsl[:]

>>> nns[0][2], nns[-1] = 50, 6
>>> nns

[[0, 1, 50, 3], 4, 6]

>>> nns1:-1]

>>> nns[:2]

>>> nns|[:-3:-1]

>>> original
[[O’ 1’ 50’ 3], 4, 5]
>>> nns[:2:3]

>>> nns[-2:]

>>> nns[0][::-1][1:5:2]

Slicing examples

>>> nns = [list(range(4)), 4, 5]
>>> original = nnsl[:]
>>> nns[0][2], nns[-1] = 50, 6

>>>nns >>> original

[[0,1, 50, 3], 4, 6] [[0,1, 50, 3], 4, 5]
>>> nns[1:-1] >>> nns[:2:3]

[4, [0, 1, 50, 3]] [[0, 1, 50, 3]

>>> nns|:2] >>> nns[-2:]

[[0, 1, 50, 3], 4] [4, 6]

>>> nns|[:-3:-1] >>> nns[0][::-1][1:5:2]

[6, 4] [50, O]

List comprehensions

An easy way to create a new list.

1st = [<expression> for x in <iterable> if <conditional expression>]

- is equivalent to -
1st = []
for x in <iterable>:
if <conditional expression probably involving x>:

lst = 1st + [<expression probably involving x>]

Tree vocabulary

Root value

Recursive description (wooden trees): Relative description (family trees):
A tree has a root value and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a value

A tree with zero branches is called a leaf One node can be the parent/child of another

People often refer to values by their locations: "each parent is the sum of its children"

Other terms to know

Root (node at top of tree. Has no parent!)

Leaf (node at bottom of tree. Has no children)
Subtree (a tree within a tree)

Depth (number of levels between node and root)
Height (maximum depth throughout entire tree)

vV vV v v Vv

Tree ADT

Constructor:
- def tree(root, branches=[])

Selectors:

- def root(tree)
- def branches(tree)

