
CS 61A
DISCUSSION 3

September 22, 2016

ANNOUNCEMENTS

- Midterm 1 on Gradescope; regrade requests by Sunday night

- HW 4 released and due today (11:59pm)

- HW 5 released and due next Tuesday

- Maps released and due 9/29; extra credit point if submitted on or
before 9/28. Project party next Wednesday (details on website).

ATTENDANCE

Link: http://tiny.cc/disc03

Secret phrase is on board

http://tiny.cc/disc03

TOPICS FOR TODAY

- Midterm 1 Recap

- Sequences

- Trees

Midterm 1

Congratulations on making it through – and great job overall!
But don’t let up…

(Feel free to talk to me if you have any concerns about your
performance.)

SEQUENCES

Sequences

A sequence is an ordered collection of elements.
Every sequence must have a length and also
allow for element selection (indexing).

Examples: lists [], tuples (), strings “ ”

>>> len(([4, 5], 6, ‘7’)[0])

2

Sequence Identification

Is a set (e.g. { 4 }) a sequence? Why or why
not?

Sequence Identification

Is a set (e.g. { 4 }) a sequence? Why or why
not?

No; sets aren’t ordered and as a result you
can’t index into them.

Lists are pretty cool

Lists are perhaps the most versatile of our
three main Python sequences.

You can populate a list with different types…

>>> whoa = [1, [1], “one”, {1: 1}, None, True, (1), 1.0]

>>> len(whoa)

8

List creation

To create a list, use either square brackets or the
list constructor.

What happens below?

>>> lst1 = [4, 2]

>>> lst2 = list(4, 2)

>>> lst1 == lst2

List creation

You can create lists either with square brackets
or with the list constructor.

What happens below?

>>> lst1 = [4, 2]

>>> lst2 = list(4, 2) # IT ERRORS HERE

>>> lst1 == lst2

List creation, continued

You can’t call list on an int! The argument to
the list constructor MUST be an iterable.

>>> list(4) # error!

>>> list((4,)) # this one’s good

[4]

>>> list(‘345’) # so is this one, funnily enough

[‘3’, ‘4’, ‘5’]

List indexing

You index into the list with lst[idx], where idx is any
integer from 0 to len(lst) - 1.

(If the list is empty, you of course can’t index into it
with anything!)

If you use negative integers, it counts from the end of
the list to the beginning. -1 is the last index, -2 is the
second-to-last index, … and so on so forth.

List indexing: example

>>> nns = list(range(5))

>>> nns[1] = list(range(5))

>>> nns

[0, [0, 1, 2, 3, 4], 2, 3, 4]

>>> nns[-5] + nns[4] >>> nns[5] + nns[-4]

>>> nns[1][1] >>> nns[-6]

>>> nns[-3][3] >>> nns[nns[-4][-4]][-4]

List indexing: example

>>> nns = list(range(5))

>>> nns[1] = list(range(5))

>>> nns

[0, [0, 1, 2, 3, 4], 2, 3, 4]

>>> nns[-5] + nns[4] >>> nns[5] + nns[-4]

4 Error

>>> nns[1][1] >>> nns[-6]

1 Error

>>> nns[-3][3] >>> nns[nns[-4][-4]][-4]

Error 1

One final reminder

Indexing in Python starts at 0, not 1!

Don’t forget this!

>>> lst = [‘first’, ‘second’]

>>> lst[1]

‘second’

>>> lst[0]

‘first’

List concatenation

You can glue multiple lists together with the + operator.

>>> nns = list(range(1, 4))

>>> nns[1] = list(range(2, 5)) # nns = [1, [2, 3, 4], 3]

>>> nns[-2] + nns[1]

>>> nns + [‘638’] + list(nns[1])

List concatenation

You can glue multiple lists together with the + operator.

>>> nns = list(range(1, 4))

>>> nns[1] = list(range(2, 5)) # nns = [1, [2, 3, 4], 3]

>>> nns[-2] + nns[1]

[2, 3, 4, 2, 3, 4]

>>> nns + [‘638’] + list(nns[1])

[1, [2, 3, 4], 3, ‘638’, 2, 3, 4]

To check whether an element is
in a list

>>> your_grades = [‘a-’, ‘a+’, ‘a’, ‘a+’]

>>> ‘f’ in your_grades

False

>>> ‘a’ in your_grades

True

List slicing

A list slice gives you back a list that is some subset of the
original list. It is also a copy of that original subset – which
is to say that list slicing always creates a new list in memory.

>>> lst = [1, 2, 3]

>>> lst[1:3]

[2, 3]

(Difference between indexing and slicing: indexing gives
you one of the elements of the list. Slicing provides you
with a LIST of some of the elements in the list.)

Syntax

You can tell it’s a list slice because there are colons in
the square brackets.

List slicing accepts three arguments, all of which are
technically optional:

>>> lst[start index : end index ± 1 : step size]

>>> lst[start index : end index ± 1]

>>> lst[start index :]

>>> lst[: end index ± 1]

>>> lst[:]

Slicing examples
>>> nns = [list(range(4)), 4, 5]

>>> original = nns[:]

>>> nns[0][2], nns[-1] = 50, 6

>>> nns >>> original

[[0, 1, 50, 3], 4, 6] [[0, 1, 50, 3], 4, 5]

>>> nns[1::-1] >>> nns[:2:3]

>>> nns[:2] >>> nns[-2:]

>>> nns[:-3:-1] >>> nns[0][::-1][1:5:2]

Slicing examples
>>> nns = [list(range(4)), 4, 5]

>>> original = nns[:]

>>> nns[0][2], nns[-1] = 50, 6

>>> nns >>> original

[[0, 1, 50, 3], 4, 6] [[0, 1, 50, 3], 4, 5]

>>> nns[1::-1] >>> nns[:2:3]

[4, [0, 1, 50, 3]] [[0, 1, 50, 3]]

>>> nns[:2] >>> nns[-2:]

[[0, 1, 50, 3], 4] [4, 6]

>>> nns[:-3:-1] >>> nns[0][::-1][1:5:2]

[6, 4] [50, 0]

List comprehensions

An easy way to create a new list.

lst = [<expression> for x in <iterable> if <conditional expression>]

– is equivalent to –

lst = []

for x in <iterable>:

if <conditional expression probably involving x>:

lst = lst + [<expression probably involving x>]

TREES

Tree vocabulary

Other terms to know

▸ Root (node at top of tree. Has no parent!)
▸ Leaf (node at bottom of tree. Has no children)
▸ Subtree (a tree within a tree)
▸ Depth (number of levels between node and root)
▸ Height (maximum depth throughout entire tree)

Tree ADT

Constructor:

- def tree(root, branches=[])

Selectors:

- def root(tree)
- def branches(tree)

