
CS 61A Discussion 10
Structured Query Language

November 17, 2016

select announcements, agenda from content;

ANNOUNCEMENTS

+ Scheme project is due today

+ It’s almost the end of the semester

+ It’s almost 2017

+ It’s almost 2018

+ It’s almost 2094

+ Well that’s kind of sobering

+ : (

AGENDA

+ S,

+ Q,

+ and L

ADVICE

+ To quit the sqlite3 interpreter, run

.quit (mostly a note for when I

forget this again next semester)

select ai_experiments from content;

Check this out if you haven’t seen it (who isn’t interested in AI these days?):
https://aiexperiments.withgoogle.com/

https://aiexperiments.withgoogle.com/
https://aiexperiments.withgoogle.com/

select sql_intro from content;

SQL is a declarative programming language for managing database systems.
“Declarative” - I tell you what I want. You get (or do) it for me. I don’t care how.

Past and current CS 61A students on SQL:

+ “SQL is fine” - anonymous Fall 2016 student

+ “I didn’t even really work on the lab” - anonymous Fall 2016 student
+ “I don’t remember SQL at all” - recent 61A graduate
+ “The sequel to what?” - not-so-recent 61A graduate

select basic_terminology from content;

+ Table: a bunch of data in a single
structure

+ Column: a category or type that we
can have data values for (technically
a column would be all of the values
for one type)

+ Row: a single data entry in a table
(contains a value for every column)

select sql_queries from content;

CS 186 visualization of
the SELECT evaluation
pipeline →

select sql_queries2 from content;

SELECT <column expression(s)>

 FROM <table(s)>

[WHERE <predicate(s)>]

[GROUP BY <column expression(s)>

 [HAVING <predicate(s)>]]

[ORDER BY <column expression(s)>]

[LIMIT <limit>];

[]: optional

<>: insert actual content

select sql_queries3 from content;

Evaluation pretty much happens in the order it’s written.

SELECT <column expression(s)> “we’ll want this stuff as output”
 FROM <table(s)> “from these tables”
[WHERE <predicate(s)>] “but only the stuff that satisfies these conditions”
[GROUP BY <column expression(s)> “and also only one value per group”
 [HAVING <predicate(s)>]] “actually per group that satisfies these conditions”
[ORDER BY <column expression(s)>] “...order the output like so”
[LIMIT <limit>]; “then finally limit it to some number of entries”

select sql_groups from content;

[GROUP BY <column expression(s)>

 [HAVING <predicate(s)>]]

Grouping: used for aggregation. When we say GROUP BY X, every row with the same value of
X will be put into one group. Accordingly, there will be a group for every distinct value of X.
Note that only one value per group can contribute to the output.

Default group: everything

Aggregate functions will be applied within individual groups:

count, max, min, sum, avg, first, last ← vague order of 61A importance

select sql_groups2 from content;

HAVING filters out groups (by contrast, WHERE
filters out individual rows)

tl;dr Grouping is like dividing your data into
buckets and then only using one aggregated
row per bucket

select sql_ordering from content;

...ORDER BY <column expression(s)>...

To output in descending order, you can use
ORDER BY <column expression(s)> DESC

or
ORDER BY -<column expression(s)>

if the column expression is numerical

select sql_joins from content;

+ The only join you need to know is the cross join.
+ In 61A we call it the join, period.

+ Thus you can think of a join as being the Cartesian
product of the table rows (each row from each table
combined with each row from every other table).

+ Aliasing (<table> as <name>) never really hurts.
If there are any similarly-named columns across
your tables, you can just do it.

select recursive_queries from content;

+ Create a local table using with
+ Add base cases to the table (starter rows, e.g. a row with 0 and 1 if we’re talking

Fibonacci numbers)
+ Reference the table recursively using SELECT statements; have some kind of

stopping point for this recursion as a WHERE condition

create table naturals_leq5 as

 with num(n) as (

 SELECT 0 UNION

 SELECT n + 1 FROM num WHERE n < 5

)

 SELECT * from num;

select recursive_queries2 from content;

Fibonacci example:

with fibonacci(prev, curr) as (

select 0, 1 union

select curr, prev + curr from fibonacci where curr < 200

) select prev from fibonacci;

We need a stopping point for our recursion!
(hence the < 200)

