
CS 170 Section 11

Approximation Algorithms

Owen Jow

April 11, 2018

University of California, Berkeley



Table of Contents

1. Reduction Review

2. Randomization for Approximation

3. Fermat’s Little Theorem as a Primality Test

1



Reduction Review



Dominating Set

Figure 1: dominating set. A subset of vertices that either includes or touches

(via an edge) every vertex in the graph.

2



Minimal Dominating Set

Minimal dominating set

A dominating set with ≤ k vertices.

Let k = 2:

(a)

Not a minimal dominating set.

(b), (c)

Minimal dominating sets.

3



Proving NP-Hardness

To prove that something is NP-hard, reduce a known NP-complete

problem to it.

Recall:

• NP-hard: at least as hard as the NP-complete problems.

• Difficulty flows in the direction of the reduction. If we reduce A to

B, then B is at least as hard as A.

4



Some NP-Complete Problems

Vertex cover Subset sum

Set cover Longest path

ZOE Rudrata cycle

MAX-2SAT Dominating set

SAT Independent set

Battleship 3D matching

Knapsack Balanced cut

Clique Verbal arithmetic

TSP Optimal Rubik’s cube

ILP Steiner tree (decision)

5



Exercise 1

Argue that the minimal dominating set problem is NP-hard.

6



Exercise 1 Solution

Argue that the minimal dominating set problem is NP-hard.

We can reduce minimal set cover to minimal dominating set.

7



Randomization for

Approximation



Exposition

NP-complete (and NP-hard) problems are everywhere. They’re the

shadows in the evening, the corruption in the government, the flyer

people on Sproul.

What can be done? Assuming P 6= NP, an optimal solution cannot be

found in polynomial time.

So we must rely on alternatives. Intelligent exponential search is one of

these. Approximation algorithms are another.

8



Approximation Algorithms

An approximation algorithm finds a solution with some guarantee of

closeness to the optimum. Notably, it is efficient (of polynomial time).

There are many ways to approximate (think of all the efficient

problem-solving strategies you’ve learned so far!). Greedy and

randomized approaches are popular, as they tend to be easy to formulate.

9



Exercise 2a

Devise a randomized approximation algorithm for MAX-3SAT. It should

achieve an approximation factor of 7
8 in expectation.

Feel free to assume that each clause contains three distinct variables.

10



Exercise 2a Solution

Randomly assign each variable a value. Let Xi (for i = 1, ..., n) be a

random variable that is 1 if clause i is satisfied and 0 otherwise. Then

E[Xi ] = (0)

(
1

8

)
+ (1)

(
7

8

)
=

7

8

Let X =
∑n

i=1 Xi be the total number of clauses that are satisfied.

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ] =
n∑

i=1

7

8
=

7

8
n

Let d∗ be the optimal number of satisfied clauses. We have that n ≥ d∗.

Therefore, a random assignment is expected to satisfy 7
8n ≥

7
8d

∗ clauses.

11



Exercise 2b

The fact that E[X ] = 7
8n tells us something about every instance of

MAX-3SAT.

Namely...?

12



Exercise 2b Solution

The fact that E[X ] = 7
8n tells us something about every instance of

MAX-3SAT.

Namely...?

There always exists an assignment for which at least 7
8 of all clauses are

satisfied. Otherwise the expectation could not be 7
8 of all clauses.

13



Fermat’s Little Theorem as a

Primality Test



Fermat’s Little Theorem

Fermat’s little theorem:

If p is prime and a is coprime with p, then ap−1 ≡ 1 (mod p).

a, b coprime

The GCD of a and b is 1.

14



Fermat’s Little Theorem as a Primality Test

Say we want to determine whether n is prime. We might think to use

FLT as a primality test, i.e.

• Pick an arbitrary a ∈ [1, n − 1] and compute an−1 (mod n).

• If this is equal to 1, declare n prime. Else declare n composite.

But does this really work? Spoilers: no.

15



Exercise 3a

(i) Find an a that will trick us into thinking that 15 is prime.

(ii) Find an a that will correctly identify 15 as composite.

16



Exercise 3a Solution

(i) Find an a that will trick us into thinking that 15 is prime.

4 will work for this. Note: when n is composite but

an−1 ≡ 1 (mod n), we call n a Fermat pseudoprime to base a.

(ii) Find an a that will correctly identify 15 as composite. 7.

17



Exercise 3b

By FLT, primes will always be identified.

The problem is false positives – composite n that masquerade as primes.

There’s one silver lining, though: if an−1 6≡ 1 (mod n) for some a coprime

to n, then this must hold for at least half of the possible values of a.

18



Exercise 3b

Suppose there exists some a in (mod n) s.t. an−1 6≡ 1 (mod n), where

a is coprime with n. Show that n is not Fermat-pseudoprime to at least

half of the numbers in (mod n).

How can we use this to make our algorithm more effective?

19



Exercise 3b Solution

For every b s.t. bn−1 ≡ 1 (mod n),

(ab)n−1 = an−1bn−1 6≡ 1 (mod n)

Since a and n are coprime, a has an inverse modulo n.

Thus ab is unique for every unique choice of b (ab1 6≡ ab2 iff b1 6≡ b2).

By extension, for every b to which n is Fermat-pseudoprime, there is a

unique ab to which n is not Fermat-pseudoprime.

We can make our algorithm more effective by checking a bunch of a (not

just one). The chance of being wrong k times in a row is at most 1
2k

.

20



Exercise 3c

Even with the improvement from (b), why might our algorithm still fail

to be a good primality test?

21



Exercise 3c Solution

Even with the improvement from (b), why might our algorithm still fail

to be a good primality test?

In order to correctly identify composite n, we need an a coprime with n

s.t. an−1 6≡ 1 (mod n). But there is no guarantee that such an a exists!

(Such composite n, which pass the FLT primality test for all a, are called

Carmichael numbers.)

22


	Reduction Review
	Randomization for Approximation
	Fermat's Little Theorem as a Primality Test

