CS 170 Section 11

Approximation Algorithms

Owen Jow
April 11, 2018

University of California, Berkeley



Table of Contents

1. Reduction Review
2. Randomization for Approximation

3. Fermat's Little Theorem as a Primality Test



Reduction Review



Figure 1: dominating set. A subset of vertices that either includes or touches
(via an edge) every vertex in the graph.



Minimal Dominating Set

Minimal dominating set (@)

A dominating set with < k vertices. {i_.
Let k =2:

(a) (b)

Not a minimal dominating set.

(b), ()

Minimal dominating sets. (c) @—O



Proving NP-Hardness

To prove that something is NP-hard, reduce a known NP-complete
problem to it.

Recall:

e NP-hard: at least as hard as the NP-complete problems.

e Difficulty flows in the direction of the reduction. If we reduce A to
B, then B is at least as hard as A.



Some NP-Complete Problems

Vertex cover Subset sum

Set cover Longest path NP-Hard
ZOE Rudrata cycle

MAX-2SAT Dominating set

SAT Independent set NP-Complete
Battleship 3D matching

Knapsack Balanced cut

Clique Verbal arithmetic

TSP Optimal Rubik's cube

ILP Steiner tree (decision)




Exercise 1

Argue that the minimal dominating set problem is NP-hard.



Exercise 1

Argue that the minimal dominating set problem is NP-hard.

We can reduce minimal set cover to minimal dominating set.



Randomization for
Approximation



NP-complete (and NP-hard) problems are everywhere. They're the
shadows in the evening, the corruption in the government, the flyer
people on Sproul.

What can be done? Assuming P # NP, an optimal solution cannot be

found in polynomial time.

So we must rely on alternatives. Intelligent exponential search is one of
these. Approximation algorithms are another.



Approximation Algorithms

An approximation algorithm finds a solution with some guarantee of
closeness to the optimum. Notably, it is efficient (of polynomial time).

There are many ways to approximate (think of all the efficient
problem-solving strategies you've learned so far!). Greedy and
randomized approaches are popular, as they tend to be easy to formulate.



Exercise 2a

Devise a randomized approximation algorithm for MAX-3SAT. It should
achieve an approximation factor of % in expectation.

Feel free to assume that each clause contains three distinct variables.

10



Exercise 2a

Randomly assign each variable a value. Let X; (for i =1,...,n) be a
random variable that is 1 if clause / is satisfied and 0 otherwise. Then

RUORIGE:

Let X =7 | X; be the total number of clauses that are satisfied.

nX,- = HEX,-: - — = =n
Sox| =D EX]= =1
=il = 1

Let d* be the optimal number of satisfied clauses. We have that n > d*.

E[X] =E

Therefore, a random assignment is expected to satisfy £n > £d* clauses.

11



The fact that E[X] = %n tells us something about every instance of
MAX-3SAT.

Namely...?

12



The fact that E[X] = %n tells us something about every instance of
MAX-3SAT.

Namely...?

There always exists an assignment for which at least % of all clauses are
satisfied. Otherwise the expectation could not be g of all clauses.

13



Fermat’s Little Theorem as a
Primality Test




Fermat’s Little Theorem

Fermat’s little theorem:

If p is prime and a is coprime with p, then a?~! =1 (mod p).

a, b coprime
The GCD of aand b is 1.

14



Fermat’s Little Theorem as a Primality Test

Say we want to determine whether n is prime. We might think to use
FLT as a primality test, i.e.

e Pick an arbitrary a € [1,n — 1] and compute a"~! (mod n).

e If this is equal to 1, declare n prime. Else declare n composite.

But does this really work? Spoilers: no.

15



Exercise 3a

(i) Find an a that will trick us into thinking that 15 is prime.

(ii) Find an a that will correctly identify 15 as composite.

16



Exercise 3a

(i) Find an a that will trick us into thinking that 15 is prime.
4 will work for this. Note: when n is composite but
a"! =1 (mod n), we call n a Fermat pseudoprime to base a.

(ii) Find an a that will correctly identify 15 as composite. 7.

17



By FLT, primes will always be identified.

The problem is false positives — composite n that masquerade as primes.
There's one silver lining, though: if a”~! # 1 (mod n) for some a coprime
to n, then this must hold for at least half of the possible values of a.

18



Suppose there exists some a in (mod n) s.t. 8"~ # 1 (mod n), where
a is coprime with n. Show that n is not Fermat-pseudoprime to at least
half of the numbers in (mod n).

How can we use this to make our algorithm more effective?

19



For every b s.t. b"~1 =1 (mod n),
(ab)" ™t = a" "1 £ 1 (mod n)

Since a and n are coprime, a has an inverse modulo n.

Thus ab is unique for every unique choice of b (aby; # aby iff by # by).
By extension, for every b to which n is Fermat-pseudoprime, there is a
unique ab to which n is not Fermat-pseudoprime.

We can make our algorithm more effective by checking a bunch of a (not
Just one). The chance of being wrong k times in a row is at most 2%

20



Exercise 3c

Even with the improvement from (b), why might our algorithm still fail
to be a good primality test?

21



Exercise 3c

Even with the improvement from (b), why might our algorithm still fail
to be a good primality test?

In order to correctly identify composite n, we need an a coprime with n
s.t. a" 1 # 1 (mod n). But there is no guarantee that such an a exists!

(Such composite n, which pass the FLT primality test for all a, are called

Carmichael numbers.)

22



	Reduction Review
	Randomization for Approximation
	Fermat's Little Theorem as a Primality Test

